

AFRL-IF-RS-TR-2002-147
Final Technical Report
June 2002

A MATLAB COMPILATION ENVIRONMENT FOR
ADAPTIVE COMPUTING SYSTEMS

Northwestern University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-147 has been reviewed and is approved for publication.

APPROVED:
 MARTIN WALTER
 Project Engineer

 FOR THE DIRECTOR:
 MICHAEL L. TALBERT, Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JUNE 2002

3. REPORT TYPE AND DATES COVERED
Final Mar 98 – Aug 01

4. TITLE AND SUBTITLE
A MATLAB COMPILATION ENVIRONMENT FOR ADAPTIVE COMPUTING
SYSTEMS

6. AUTHOR(S)
Prithviraj Banerjee

5. FUNDING NUMBERS
C - F30602-98-2-0144
PE - 62301E
PR - D002
TA - TC
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northwestern University
Center for Parallel and Distributed Computing
2145 Sheridan Road
Evanston IL 60208

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-147

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Martin Walter/IFTC/(315) 330-4102/ Martin.Walter@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report provides a brief summary of the research and development of a compiler for a mix of general purpose
processors and adaptive computing processors from MATLAB. It incorporates a list of publications resulting from this
research.

15. NUMBER OF PAGES
20

14. SUBJECT TERMS
MATLAB, Compilation, Adaptive Computing Systems
 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

SUMMARY ... 1
1. INTRODUCTION .. 1
2. MODELS, ASSUMPTIONS AND PROCEDURES .. 2
3. RESULTS AND DISCUSSION... 4
4. CONCLUSIONS .. 12
5. PUBLICATIONS ... 13

TABLE OF FIGURES

Figure 1: Overview of the MATCH testbed. .. 4
Figure 2. Overview of the MATCH Compiler. .. 5
Figure 3. An overview of the compilation flow from MATLAB to VHDL. ... 6
Figure 4. Results of our MATCH to VHDL compiler on five MATLAB benchmark programs. 7
Figure 5. The various steps of a MATLAB to C compiler. ... 8
Figure 6. Use of the SYMPHANY automated tool on the various benchmarks.. 9
Figure 7. An Example FIR code in MATLAB with Directives... 10
Figure 8. Some example results of the matrix multiplication library function. .. 11

1

SUMMARY

This final report summarizes the research results obtained during the MATCH compiler
project on “A MATLAB Compilation Environment for Adaptive Computing Systems,”
supported at Northwestern University between March 1998 to August 2001. The
objective of the MATCH project was to make it easier for DOD users to develop efficient
codes for adaptive computing systems. We have developed a compiler that takes in DOD
applications written in a high-level language (MATLAB) and generates efficient low
level code that runs on a distributed environment of commercial-off-the-shelf (COTS)
FPGAs, embedded processors, and digital signal processors. The main features of the
compiler are:
1. It enable the users to reduce the code development times for adaptive applications from
weeks using manual approaches to hours using compiler tools.
2. It produce efficient codes that are within a factor of 2-4 of the best manual approach
with respect to optimizing resources under performance constraints, or optimizing
performance under resource constraints.
The project URL is at: http://www.ece.nwu.edu/cpdc/Match/Match.html
The results of the MATCH compiler have been transferred to a startup company called
AccelChip, Inc. (formerly called MACH DESIGN SYSTEMS). The company was
founded by two of the PIs of the proposal, Prith Banerjee and Alok Choudhary, and two
of the Ph.D. students, Malay Haldar and Anshuman Nayak.

1. INTRODUCTION

Efficient high-level design tools that can map behavioral descriptions of signal and image
processing applications to FPGA architectures are one of the key requirements to fully
leverage FPGAs for high-throughput computations and meet time to market pressures.
Currently, most FPGA designs are entered at the level of Register Transfer Level (RTL)
VHDL or Verilog. It is widely recognized that there is a need for design tools at the high
level using languages such as C/C++ or MATLAB. MATLAB is an extremely popular
language in the signal and image processing community with over 500,000 users. A
direct synthesis path from MATLAB into hardware would be very useful. The MATCH
compiler at Northwestern University takes as input algorithms described in MATLAB,
and generates Register Transfer Level (RTL) VHDL. The RTL VHDL then can be
mapped to FPGAs using commercial tools. The input application is mapped to multiple
FPGAs by parallelizing the application and embedding computation and synchronization
primitives automatically. Our compiler infers the minimum number of bits required to
represent the variables through a precision inferencing analysis framework. The compiler
can leverage optimized Intellectual Property (IP) cores to enhance the hardware
generated. The compiler also exploits parallelism in the input algorithm by pipelining in
the presence of resource constraints. We have demonstrated the utility of the compiler by
synthesizing hardware for a couple of signal/image processing algorithms and comparing
them to manually designed hardware.

2

2. MODELS, ASSUMPTIONS AND PROCEDURES

The MATCH project consisted of six research tasks. A brief description of each of the
tasks is given below.

■ Task 1: Development of a Testbed
• Development of a hardware testbed consisting of VME chassis, Motorola

embedded boards, Transtech DSP boards, Annapolis Wildchild board,
Annapolis WILDSTAR board, and FORCE 5V

• Acquired, installed and integrated hardware and software components
together

• Performed measurements of basic operations on testbed

■ Task 2: Implementation of Basic MATLAB Compiler
• Implementation of a compiler that takes in MATLAB and generates C code

for the embedded and DSP processors, and RTL VHDL code for the FPGA
board, and use commercial C and VHDL compilers to generate the object
code

• Implemented MATLAB parser, AST builder, basic MATLAB to C
compiler with library approach

• Implemented a basic compiler to convert MATLAB into C automatically
• Implemented a dynamic runtime system called MATCH Virtual Machine
• Implemented some basic type and shape inferencing for MATLAB

variables
• Designed and implemented an algorithm to map MATLAB to RTL VHDL

for FPGAs for single FPGA
• Designed and implemented an algorithm to map MATLAB to RTL VHDL

for multiple FPGAs
• Evaluated compiler output with hand-mapped designs

■ Task 3: Automatic Parallelism and Mapping
• Developed heuristics based on mixed integer linear programming to map a

given dataflow graph of a MATLAB program on heterogeneous resources
• Optimizing resources under performance constraints
• Optimizing performance under resource constraints

•Evaluated the heuristics on various benchmarks (STAP, MPEG decoder, and
about 100 synthetic benchmarks)

■ Task 4: MATLAB Compiler Directives
• Developed directives to specify type, shape, size, precision, data distribution

and alignment, task mapping, resource and time constraints
• Implemented directives within parser, stored information in AST for compiler

to use

3

• Developed a report specifying the various directives

■ Task 5: Evaluation of Adaptive Applications
• Evaluating applications such as Space Time Adaptive Processing,

Hyperspectral Image Processing, and Honeywell benchmarks on MATCH
testbed by writing applications in MATLAB and manually converting to the
various components of testbed in C and VHDL and measuring performance

• Used to identify MATLAB functions

■ Task 6: Library Development
• Identification and Implementations of Basic Primitives
• Implemented following functions on embedded, DSP boards: Matrix

multiplication, Matrix addition, 1 and 2 D FFT
• Implemented following functions on Wildchild FPGA board: Vector Sum,
Matrix multiplication, matrix addition, filtering, 2 D FFT, Complex matrix
multiplication, wavelet transform
• Developed C Program Interfaces to all libraries from host to DSP and FPGA
boards
• Developed interfaces to Integrated Sensors Inc. RTExpress MATLAB libraries
• Characterizing performance for varying problem size, varying number of

processors and FPGAs, will be used by compiler

4

3. RESULTS AND DISCUSSION

We will now report on our results of our research under the six tasks in the MATCH
project.

Testbed (Task 1): We have developed a hardware testbed of an adaptive computing
system. The testbed consists of: (1) A Wildchild board from Annapolis Micro Systems
containing 9 XILINX XC4010 FPGAs and 2 MB of memory; A Wildstar board from
Annapolis Microsystems containing three Xilinx Virtex FPGAs, and 4 MB of memory;
(3) Two Motorola MVME-2604 embedded boards containing 200 MHz PowerPC 604
microprocessor, 64 MB RAM; (4) One Transtech TDMB 428 DSP board consisting of
four Texas Instruments 60 MHz TMS 320C40 digital signal processors; (5) A Force 5V
board consisting of a microSPARC-II CPU and 64 MB of RAM. These boards are
mounted on a VME bus chassis. We have integrated the various software components to
have these various boards to operate together.

Figure 1: Overview of the MATCH testbed.

5

Basic Compiler (Task 2): We have developed a MATCH compiler that takes MATLAB
programs as input, and produces C programs to be mapped onto the embedded
processors, and DSP processors, and RTL VHDL that will be mapped onto the FPGAs.
In addition the compiler has the capability of making calls to library functions that are
available on various targets. An overview of the MATCH compiler is shown in the
figure below.

Figure 2. Overview of the MATCH Compiler.

As part of the compiler effort we have developed a MATLAB to VHDL compiler which
consists of the following steps. The front-end parses the input MATLAB program and
builds a MATLAB AST (Abstract Syntax Tree). The input code may contain directives
regarding the types, shapes and precision of arrays that cannot be inferred, which are
attached to the AST nodes as annotations. This is followed by a type-shape inference
phase. MATLAB variables have no notion of type or shape. The type-shape phase
analyzes the input program to infer the type and shape of the variables present for which
type/shape is not provided by directives. This is followed by a scalarization phase where
the operations on matrices are expanded out into loops. In case optimized library
functions are available for a particular operation, it is not scalarized and the IP core
corresponding to the library function is used instead. The scalarized code is then passed
through the parallelization phase. The parallelization phase attempts to exploit coarse
grain parallelism by either splitting a loop onto multiple FPGAs on the board (data-
parallel approach) or by putting different tasks onto different FPGAs and pipelining the
output of one to the input of another (systolic approach). The parallelization phase relies

6

on communication libraries implemented for the target architecture board to
communicate between the different FPGAs. A state machine description in VHDL is then
synthesized from the parallelized scalarized MATLAB code for each of the FPGAs. Most
of the hardware related optimizations are performed on the VHDL AST. A precision
inference scheme finds the minimum number of bits required to represent each variable
in the AST. The precision information is used in instantiating customized IP blocks
corresponding to the functions and operators. Transformations are then performed on the
AST to optimize it according to the memory accesses present in the program and
characteristics of the external memory. This is followed by a phase to perform
optimizations like pipelining under resource constraints that alter parts of the state
machine that was constructed earlier. Finally a traversal of the optimized VHDL AST
produces the output code.

Figure 3. An overview of the compilation flow from MATLAB to VHDL.

We have developed a lot of optimizations as part of the compiler:

• Scheduling and allocation
• Pipelining of loops
• Precision analysis of variables
• Error analysis of variables
• Memory packing
• Intellectual property core integration

Some experimental results of the MATCH compiler are shown in Figure 3. Each manual
design took at least a month to design. The MATCH compiler designed in less than a
minute. In addition, the results of the MATCH compiler are equivalent (and sometimes
better) to the manual design. The vertical scale shows the execution time of the
compiler-generated code normalized to the manual design. The first bar shows the
execution time for a manual design. The second bar shows the time with a basic
compiler generating VHDL code without optimizations. The third one shows the time

7

with the compiler with the pipelining optimization. It can be seen from these results that
the results are comparable to manual designs.

Figure 4. Results of our MATCH to VHDL compiler on five MATLAB benchmark
programs.

Another part of the MATCH compiler was the compilation of MATLAB programs to C
programs. A key part of this compiler was the automatic types and shapes of arrays in
MATLAB. The various steps of this compiler are shown in Figure 5.

8

Figure 5. The various steps of a MATLAB to C compiler.

The first step is to parse the MATLAB program into the MATLAB AST. The AST is
next converted into a Static Single Assignment (SSA) form and then into a Single
Operator Form. Various optimizations such as common subexpression elimination, copy
propagation, and dead-code elimination are performed. The next key stage is automatic
determination of types and shapes of arrays. Finally there is code generation into C code
using scalarization of vector statements into for loops. Numerous optimizations such as
loop fusion, linearization, unrolling, are used.

Automatic Mapping (Task 3): We have developed automatic algorithms for partitioning
and mapping the MATLAB programs on the heterogeneous target. We have developed
algorithms for pipelining, partitioning, allocation of resources, and scheduling of the
operations on the various platforms to perform time-constrained resource optimizations.
We have developed a tool called SYMPHANY for performing the task of automated
program partitioning and pipelining. Given a high-level sequential specification of the
real-time computation with associated timing constraints (latency and throughput), the
tool automatically arrives at a cost-effective solution to the system design problem using
embedded processors, DSP processors, FPGAs. Our algorithm is based on a mixed
integer linear programming formulation and uses an off-the-shelf LP solver called
“lp_solve”. We have applied our tool to the data flow graphs of three synthetic
benchmarks and to the graphs for the STAP application and an MPEG decoder. In each
benchmark, we have studied the solution to the problem for various combinations of
throughputs and latency constraints. In each case the SYMPHANY tool gave the right
solutions in terms of the number of pipeline stages used. It gave better solutions than a
hand-optimized solution in most cases by about 10-20% in terms of the cost of the
solution in dollars. An example set of results on the STAP application is shown below.

9

Figure 6. Use of the SYMPHANY automated tool on the various benchmarks.

Compiler Directives (Task 4): We have developed a complete set of directives to specify
type, shape, size, precision, data distribution and alignment, task mapping, resource and
timing constraints. The compiler recognizes many of these directives. Examples of such
directives are:
%!MATCH SHAPE a(100,00)
%!MATCH TARGET WILDCHILD
%!MATCH STREAM

Figure 7 shows an example of a FIR filter code in MATLAB with directives.

10

Figure 7. An Example FIR code in MATLAB with Directives.

Applications (Task 5): We have looked at various adaptive applications in order to
identify which libraries to implement. The applications include the FIR Filter, Matrix
Multiplication, Sobel Transform, Average Filter, FFT, STAP application and the MPEG
decoder, NASA Hyperspectral algorithms.

Libraries (Task 6): We have developed of various MATLAB libraries on the different
platforms. The approach used was to develop each function as a parameterized function
with the size of the data, the number of processors or FPGAs used, and the precision of
the data (8 bit, 16 bit, 32 bit) for fixed point and floating point representations on three
platforms. The platforms are the Annapolis Wildchild FPGA board, the Transtech DSP
board and the Motorola embedded processor board. We have completed the development
of the following library functions on the Wildchild FPGA board (using RTL VHDL and
the commercial synthesis tools, namely Synplicity and Xilinx XACT place and route
tools). (1) Real matrix addition (2) Real matrix multiplication (3) IIR and FIR Filtering
(4) One and two-dimensional FFT. We have also developed the following library
functions on the Transtech DSP board and the Motorola embedded board (using C plus
MPI and the native C compilers for the Transtech and the Motorola boards). (1) Real and
complex matrix addition (2) Real and complex matrix multiplication (3) One and two
dimensional FFT. Each of these libraries has been developed with a variety of data
distributions such as blocked, cyclic and block-cyclic distributions. We have
characterized the performance of each of these library functions on various platforms for
various data sizes and precision. In each case we have developed C program interfaces
to our MATCH compiler so that the programs can be controlled from the host controller
(Force board).

11

Some example results of the matrix multiplication library function on various targets are
shown in Figure 8.

Figure 8. Some example results of the matrix multiplication library function.

12

4. CONCLUSIONS

In conclusion we have developed the MATCH compiler which is capable of generating
highly optimized hardware from applications described in MATLAB. A set of effective
optimizations implemented in the compiler ensures that the quality of the output
hardware is comparable to manually optimized hardware. The optimizations include
parallelization, precision inferencing, IP core integration and pipelining. The
effectiveness of the compiler was demonstrated by synthesizing hardware for a couple of
signal/image processing applications. The outputs of the synthesized hardware were
functionally verified against the outputs of the MATLAB interpreter. The execution times
were almost equivalent to manual designed hardware, in fact superior in some cases were
large amount of parallelism was available across loops. The resource utilizations were
within a factor of four of the manual designs. All this was achieved while reducing the
design time from months to minutes.

In terms of publications and patents, the MATCH project has:

• Supported 12 graduate students
• Produced 22 conference papers
• 3 Journal papers
• 10 Technical reports
• 4 Ph.D. theses
• 10 M.S. theses
• Three patents have been filed

Finally the technology has been transferred to a startup company called AccelChip, Inc.
which has developed a commercial version of a tool called AccelFPGA and is selling it to
various DSP customers.

13

5. PUBLICATIONS

• D.Chakrabarti and P. Banerjee, “Static Single Assignment Form for Message-
Passing Programs,” International Journal of Parallel Programming, to appear,
2001.

• A.Nayak, M. Haldar, C. Chen, M. Sarrafzadeh, and P. Banerjee, “Power

Optimizations in Delay Constrained Circuits,” VLSI Design Journal, to appear,
2001.

• M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and E. Ayguade,

“Static and Dynamic Locality Optimizations Using Integer Linear Programming,”
IEEE Transactions on Parallel and Distributed Systems, to appear, 2001.

• Y. Yuan and P. Banerjee, “A Parallel Implementation of a Fast Multipole Based

3-D Capacitance Extraction Program on Distributed Memory Multicomputers,”
Journal of Parallel and Distributed Computing, to appear, 2001.

• V. Kim, P. Banerjee, K. De, and J. Brouwers, “Parallel and Distributed VLSI

Synthesis on a Network of Workstations,” International Journal of Parallel and
Distributed Systems and Networks, to appear, 2001.

• V. Krishnaswamy, G. Hasteer, and P. Banerjee, “Automated Parallelization of

Compiled Event Driven VHDL Simulation,” IEEE Transactions on Computers, to
appear, 2001.

• D. Chakrabarti, “Global Optimization in Distributed Memory Message Passing

Programs,” Ph.D. dissertation, Northwestern University, Aug. 2000.

• Y. Yuan, “Parallel Algorithms for 3D Extraction,” Ph.D. dissertation,
Northwestern University, Aug. 2000.

• M. Haldar, “Optimized Hardware Synthesis for FPGAs,” Ph.D. dissertation,

Northwestern University, Aug. 2001.

• A. Nayak, “Automatic Parallelization and Optimizations for Synthesizing
MATLAB Programs on Multi-FPGA Systems,” Ph.D. dissertation, Northwestern
University, Aug. 2001.

• S. Periyayacheri, A. Nayak, A. Jones, N. Shenoy, A. Choudhary, and P. Banerjee,

``Library Functions in Reconfigurable Hardware for Matrix and Signal Processing
Operations in MATLAB,'' Proc. 11th IASTED Parallel and Distributed
Computing and Systems Conference (PDCS'99), Cambridge, MA, Nov. 1999.

14

• M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, ``On Reducing
False Sharing While Improving Locality on Shared Memory Multiprocessors,''
Proc. 1999 International Conference on Parallel Architectures and Compilation
Techniques (PACT'99)}, Newport Beach, CA, Oct. 12-16, 1999.

• Z. Ye, N. Shenoy, and P. Banerjee, ``A C Compiler for a Processor with a

Reconfigurable Functional Unit,'' Proc. ACM/SIGDA Symposium on Field
Programmable Gate Arrays, Monterey, CA, Feb. 2000.

• N. Shenoy, A. Choudhary, and P. Banerjee, ``A System-Level Synthesis

Algorithm with Guaranteed Solution Quality,'' Proc. Design Automation and Test
in Europe (DATE 2000)}, Paris, FRANCE, March 27-30, 2000.

• M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, ``Parallel Algorithms for

FPGA Placement,'' Proc. Great Lakes Symposium on VLSI (GVLSI 2000),
Evanston, IL, March 2000.

• P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P.

Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, and M. Walkden,
``MATCH: A MATLAB Compiler for Distributed, Reconfigurable Computing
Systems,'' submitted in Dec. 1999 to FPGA Conference on Custom Computing
Machines (FCCM2000), Apr. 2000.

• Y. Yuan and P. Banerjee, ``A Parallel Implementation of A Fast Multipole Based

3-D Capacitance Extraction Program on Distributed Memory Multicomputers,''
Proc. 14th International Parallel and Distributed Processing Symposium (IPDPS
2000), Cancun, MEXICO, May 1-5, 2000 (Best Paper Award).

• Z. Ye, P. Banerjee, S. Hauck, and A. Moshovos, ``CHIMAERA: A High-

Performance Architecture with a Tightly-Coupled Reconfigurable Functional
Unit,'' Proc. 27th International Symposium on Computer Architecture,
Vancouver, CANADA, June 10-14, 2000.

• M. Haldar, A. Nayak, A. Choudhary, P. Banerjee, “MATCH Virtual Machine: An

Adaptive Runtime System to Execute MATLAB in Parallel,” Proc. Int. Conf.
Parallel Processing, Aug. 2000.

• Nayak, M. Haldar, A. Choudhary, P. Banerjee, “A Library Based Compiler to

Execute MATLAB Programs on Heterogeneous Platforms,” Proc. Parallel and
Dist. Computing Systems (PDCS2000), Nov. 2000.

• V. Kim, P. Banerjee, K. De, and J. Brouwers, ``Parallel and Distributed VLSI

Synthesis for Commericial CAD on a Network of Workstations,'' Proc. 12th
IASTED International Conference on Parallel and Distributed Computing
Systems (PDCS 2000), Las Vegas, NV, November 6-9, 2000.

15

• M. Haldar, A. Nayak, N. Shenoy, A. Choudhary, and P. Banerjee, ``FPGA

Hardware Synthesis from MATLAB,'' Proc. of VLSI Design Conf. Jan. 2001,
Bangalore, India.

• N. Shenoy, P. Banerjee, A. Choudhary, and M. Kandemir, ``Efficient Synthesis of

Array Intensive Computations onto FPGA Based Accelerators,'' Proc. of VLSI
Design Conf. Jan. 2001, Bangalore, India.

• M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, ``Automated Synthesis of

Pipelined Designs on FPGAs for Signal and Image Processing Applications
Described in MATLAB,'' Proc. Asia Pacific DAC, Mar. 2001.

• M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, ``"FPGA Hardware

Synthesis from MATLAB Utilizing Optimized IP Cores" Proc. Ninth
ACM/SIGDA International Symposium on Field Programmable Gate Arrays.,
Feb. 2001, San Jose, CA.

• A.Nayak, M. Haldar, A. Choudhary, P. Banerjee, ``Precision And Error Analysis

Of MATLAB Applications During Automated Hardware Synthesis for FPGAs,''
Proc. Design Automation and Test in Europe (DATE 2001), Mar. 2001, Paris,
France.

• M. Haldar, A. Nayak, A. Choudhary, P. Banerjee, ``A System for Synthesizing

Optimized FPGA Hardware from MATLAB,'' Proc. Int. Conf. Computer Aided
Design, Nov. 2001.

• A.Nayak, M. Haldar, A. Choudhary and P. Banerjee, ``Parallelization of

MATLAB Applications for a Multi-FPGA System,'' Proc. FPGA Symp. on
Custom Computing Machines (FCCM-2001), Napa Valley, CA, Apr. 2001.

• P. Joisha and P. Banerjee, “Correctly Detecting Intrinsic Type Errors in Typeless

Languages Such as MATLAB,” Proc. Of the APL Conf., New Haven, CT, Jun.
2001, to appear.

• D. Chakrabarti and P. Banerjee, “Global Optimization Techniques for Automatic

Parallelization of Hybrid Applications,” Proc. Int. Conf. Supercomputing,
Sorento, Italy, Jun. 2001, to appear.

• A. K. Jones and P. Banerjee, “Parallel Implementation of Matrix and Signal

Processing Libraries on FPGAs,” Proc. IASTED Parallel and Distributed
Computing Systems Conference (PDCS 2001), Anaheim, CA, August 2001.

16

• P. Banerjee, M. Haldar, A. Nayak, and A. Choudhary, “Overview of the MATCH
Compiler for Compiling MATLAB Programs into Hardware,” Proc. NASA Earth
Science Technology Conference, Washington DC, August 2001.

• P. Banerjee, A. Choudhary, M. Haldar and A. Nayak, “Method and Apparatus for

Automatically Generating Hardware from Algorithms Described in MATLAB,”
U.S. Patent filed, Jan. 26, 2001.

• P. Joisha, P. Banerjee, N. Shenoy, “Methods for Array Shape Inferencing for a

Class of Functions in MATLAB,” U.S. Patent filed Jan. 31, 2001.

• Nayak, M. Haldar, N. Shenoy, A. Choudhary, P. Banerjee, “Design System and
Method to Compile MATLAB programs on Heterogeneous Platforms
Comprising FPGAs and Embedded Processors,” U.S. Patent filed March 19,
2001.

